
A PUZZLE OF TOSSING COINS

UMESH P. NARENDRAN

1. Question

A large number of people are tossing unbiased coins that have equal probability
for heads and tails. Each of them tosses a coin until he/she gets a tail. So, the
tosses by different people may be like this:

T

HT

HHT

HHHT

HHHHT

...

If a large number of people are doing this, what is the average number of tosses
(i.e., total coin tosses divided by number of people) a person makes?

2. Answer

2 tosses, on average.

3. Solution

3.1. Approach 1. Irrespective of all other conditions, heads and tails occur with
equal probability, so the number of heads will be equal to the number of tails
ultimately.

Now, for n people, the number of total tails is exactly equal to n, because every
person continues tossing until he/she gets exactly one tail.

Since the number of heads and tails are approximately equal, there will be ap-
proximately n heads. So, there will be a total of approximately 2n tosses.

This means a person does approximately 2 tosses on average.

3.2. Approach 2. Let there be n people.
In the first round, approximately n

2 heads and n
2 tails result. People who got

tails will stop there.
In the second round, of the n

2 tosses, approximately n
4 will give heads and n

4 will
give tails.

In the third round, of the n
4 tosses, approximately n

8 will give heads and n
8 will

give tails.
So, total number of tosses =

(
n
2 + n

2

)
+
(
n
4 + n

4

)
+
(
n
8 + n

8

)
+· · · = n

(
1 + 1

2 + 1
4 + · · ·

)
=

n · 1
1− 1

2

= 2n.

So, average number of tosses per person = 2n
n = 2.

1



2 UMESH P. NARENDRAN

3.3. Approach 3. There is a probability of 1
2 to get a tail in one toss, 1

4 chance

to get in 2 tosses, 1
8 chance to get in 3 cases etc.

So, the average number of tosses is

1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ · · · =

∞∑
k=1

k

2k

There are many ways to find this sum. Given below are two of them.

3.3.1. Representing as the sum of two serieses. Let

x =
1

2
+

2

4
+

3

8
+

4

16
+ · · ·

=
1

2
+

(
1

4
+

1

4

)
+

(
1

8
+

2

8

)
+

(
1

16
+

3

16

)
+ · · ·

=

(
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

)
+

(
1

4
+

2

8
+

3

16
+ · · ·

)
=

1
2

1− 1
2

+
x

2

So, x = 2 ·
1
2

1− 1
2

= 2.

3.3.2. Deriving by another method. When −1 < x < 1,

1 + x + x2 + x3 + · · · = 1

1− x

Differentiating,

0 + 1 + 2x + 3x2 + 4x3 + · · · = 1

(1− x)2

Multiply by x,

x + 2x2 + 3x3 + 4x4 + · · · = x

(1− x)2

Putting x = 1
2 ,

1

2
+

2

22
+

3

23
+ · · · =

1
2(
1
2

)2 = 2

4. Further questions

It may come as a surprise that the average number of tosses if only two. In fact,
there will be many tosses for many people, but they will be considerably less in
number. Also, the maximumm number of people (around 50%) have only one toss.
These make average value to 2.

It may be of interest to check the range of number of tosses when n people are
involved. Since around half of the people stop at each toss, it is easy to see that it
will take approximate dlog2 ne tosses so all the people will get a tail.



A PUZZLE OF TOSSING COINS 3

5. Simulation

Simulation is the best way to verify a probability hypothesis. When we try with
bigger samples, we get answers closer to the theoretical result. It happens here as
well.

5.1. The program. I wrote the following Java program to simulate this.

// ------------------------------------------------------------------------------

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Random;

// Simulates coin tosses till the occurrence of a Tail.

// Collects statistics to check whether the theoretical probability is accurate.

public class TillTailToss {

// Handles the toss done by a person.

private class Person {
// To make sure the tosses are random and independent, each person is

// given a random number generator, rather than using a common one.

private Random random;

// Indicates whether this person has got a Tail.

private boolean done;

// Total number of tosses, till the tail.

private int nTosses;

// Constructor for TillTailToss.Person.

public Person() {
random = new Random();

done = false;

nTosses = 0;

}

// Do the next toss. Collect the statistics. If it is a tail,

// make sure there will not be any other tosses.

public boolean tossNext() {
if (done) {
return true;

}
++nTosses;

if (random.nextInt(2) == 0) {
done = true;

}
return done;

}



4 UMESH P. NARENDRAN

// Return the number of tosses.

public int tosses() {
return nTosses;

}
}

private List<Person> people = null;

// Constructor for TillTailToss.

// The parameter specifies how many people should be simulated.

public TillTailToss(int n) {
people = new ArrayList<Person>();

for ( int i = 0; i < n; ++i) {
people.add(new Person());

}
}

// Do the next round of tosses with all the people involved.

// Returns true if all of them got tail, false otherwise.

public boolean tossNext() {
boolean done = true;

for (Person person : people) {
if (person.tossNext() == false) {
done = false;

}
}
return done;

}

// Do tosses until everyone gets a tail.

// Returns the number of rounds of tosses.

public int doTosses() {
int rounds = 0;

do {
++rounds;

} while (!tossNext());

return rounds;

}

// Reports the statistics collected.

public void report() {
// Constructs a frequency table.

Map<Integer, Integer> tossCounts = new HashMap<Integer, Integer>();

for (Person person : people) {
Integer tosses = person.tosses();

Integer freq = tossCounts.get(tosses);

tossCounts.put(tosses, (freq == null ? 1 : freq + 1));



A PUZZLE OF TOSSING COINS 5

}

// Writes the report.

int totalTosses = 0;

for (Integer tossCount : tossCounts.keySet()) {
Integer freq = tossCounts.get(tossCount);

System.out.println(String.format("%d tosses: %d", tossCount, freq));

totalTosses += (tossCount * freq);

}
System.out.println("Total tosses = " + totalTosses);

System.out.println("Average tosses = " + totalTosses * 1.0 / people.size());

}

// The main function.

// The only command line parameter specifies how many people should be simulated.

public static void main(String[] args) {
TillTailToss t = new TillTailToss(Integer.parseInt(args[0]));

System.out.println("Number of rounds = " + t.doTosses());

System.out.println("Frequencies:");

t.report();

}
}
// ------------------------------------------------------------------------------

5.2. Results. The results of the above program, for sample sizes 10, 100, 1000,
10000, 100000 and 1000000 are tabulated below.



6 UMESH P. NARENDRAN

n 10 100 1, 000 10, 000 100, 000 1, 000, 000
dlog2 ne 4 7 10 14 17 20
Rounds 3 8 13 15 18 22
1 toss 6 53 498 5028 50238 500633

2 tosses 0 24 259 2471 24816 249743
3 tosses 4 14 115 1317 12405 124257
4 tosses 5 71 608 6217 62797
5 tosses 1 31 301 3241 31347
6 tosses 0 12 169 1605 15648
7 tosses 1 7 78 718 7682
8 tosses 2 3 44 395 3930
9 tosses 1 16 185 2003
10 tosses 1 9 82 977
11 tosses 1 2 51 481
12 tosses 1 1 26 240
13 tosses 2 12 141
14 tosses 2 2 58
15 tosses 2 3 33
16 tosses 1 16
17 tosses 2 4
18 tosses 1 4
19 tosses 2
20 tosses 3
21 tosses 0
22 tosses 1

Total 18 191 1988 20022 199629 1999539
Average 1.8 1.91 1.988 2.0022 1.99629 1.999539

6. Further notes

This puzzle is more popularly known as The Sultan’s girl puzzle.
In the original puzzle, a Sultan decides to increase the female population in his

country, and passes a law that every woman should stop getting pregnant after she
has a boy. The puzzle is to find whether this law is effective to increase the female
to male ratio. (The answer is no.) This is a slight modification of the puzzle.


